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Background estimation in experimental spectra
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A general probabilistic technique for estimating background contributions to measured spectra is presented.
A Bayesian model is used to capture the defining characteristics of the problem, namely, that the background
is smoother than the signal. The signal is allowed to have positive and/or negative components. The back-
ground is represented in terms of a cubic spline basis. A variable degree of smoothness of the background is
attained by allowing the number of knots and the knot positions to be adaptively chosen on the basis of the
data. The fully Bayesian approach taken provides a natural way to handle knot adaptivity and allows uncer-
tainties in the background to be estimated. Our technique is demonstrated on a particle induced x-ray emission
spectrum from a geological sample and an Auger spectrum from iron, which contains signals with both
positive and negative components.

PACS numbsg(s): 02.50.Rj, 07.60-j, 29.30.Kv

[. INTRODUCTION ior in the estimated background. The approach we take is to
allow the number of knots and their placement to adapt to the
Quantitative spectral analysis often relies on being able téequirements of the data, similar to what was used before for
subtract from the data the contribution from the backgrounddeblurring[3].
In a previous paper, von der Lindest al. [1] presented a ~ Another objective of this paper is to demonstrate that,
general approach to estimating a background contained iyith @ minor modification to the method presented in Ref.
spectral data that was based on the assumption that the sighal, it is possible to cope with signals with positive and nega-
varies much more rapidly than the background. In that workive components. We demonstrate this capability on an Au-
the background was represented by a sequence of cub@er spectrum. We refer the reader to the earlier pppior
splines with equally spaced knots. The minimum knot spacdetails that we omit here.
ing was determined by the width of the signal structure that
one V\!iSheS to exclude from the backgrqund CL.JI’VQ. . II. BAYESIAN APPROACH TO BACKGROUND
This paper extends the earlier work in two important di- ESTIMATION
rections; first by employing adaptive splines to represent the
background, which is achieved by allowing the number of The general idea that we wish to capture with our Baye-
spline knots to vary in accordance with the requirements ofian model is that a spectrum consists of a smooth back-
the data, and secondly, by handling bipolar signals, i.e., sigground with additive signal peaks that are relatively com-
nals with positive and negative components. We also address
several calculational issues, including the improvement in ' '

the convergence procedure to determine the spline ampli o | background |
tudes. data
We motivate our improvements by referring to a graph of * knot positions

the results from Ref[1] showing a particle induced x-ray
emission (PIXE) spectrum and the estimated background 10° |
function. The data in Fig. 1 are displayed on a logarithmic
scale to exhibit a deficiency in the previous results, already§
pointed out in Ref[2]. At the high-energy end of the spec- S L
trum, which contains no apparent signal structure, the esti-
mated background has many oscillations. These oscillation:
do not appear to be supported by the data, given their large

o . . . : . 10
uncertainties. Although the wiggles in this tail region of the
spectrum do not pose a problem for interpreting this data set
they demonstrate an inherent problem in the previous ap: o’

proach, which could degrade its estimates underneath signz 0 0.1 0.0 0.3 0.4 0.5
peaks. Our primary goal here is to avoid this spurious behav- Energy (arb. units)

FIG. 1. A PIXE spectrum for a geological sample with the back-
ground estimate obtained in R¢L] using 35 evenly spaced spline
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1063-651X/2000/6(@)/11529)/$15.00 PRE 61 1152 ©2000 The American Physical Society



PRE 61 BACKGROUND ESTIMATION IN EXPERIMENTAL SPECTRA 1153

pact. We seek a curvie(x), defined over an interval from A. The prior probabilities

Xmin 10 Xmax, that describes the background under a spec- The distinguishing characteristic of the background that
trum, which is discretely sampled at positiorsover the e wish to exploit is its smoothness. In the earlier witk
same interval. The measured values of the spectrum at thegg, prior on the background used to express its smoothness
points are designatedi, collectively referred to as the vec- \ya5 based on the integral of the square of the slope of the
tor d. To cover a wide range of applications, we identify the hackground. That prior is inconsistent with the cubic splines
background by the fact that it is smoother than the signal,geq to represent the background, which are known to mini-

More restrictive specifications are certainly possible for amize the integral of the square of the second derivative.
restricted class of problems and can be dealt with in a similaiyerefore, we now use the more appropriate prior

fashion. The smoothness of the background is ensured by

expanding it in terms of a set of cubic spline functions _ E B f nion|2
p(blw. )= sexp —p | dxb’(x), 3
E E whereb”(x) is the second derivative of the background func-
b= 21 o(xi,€,)c,= 2‘1 ®; ,c, (1)  tion atx. This prior has the additional advantage over the

previous one that it does not penalize linear backgrounds.
The factorZ is included for normalization. The positive pa-

or in vector notatiorb=®c. Thec, are the spline values at 'ameteru controls the width of this prior distribution.
the E knot positions¢,. The transformationp(x; ,&,) de- The expansion in Ec(1) yields for the prior
pends on the vector§ andx and, hence, the matrisb de- _ ~
pends on these vectors. Without going into detail, we use the P(CltEE D)= “2u=2(detD) exp{ - uc'Dc}, (4)
results of spline theory4—6] to determine the elements of " " )
®. An implicit assumption must be made about the curve at'here D.,,,,=Jdx ¢, (X) ¢, (x). The matrix D can be
the end points. We choose the natural spline condition, thagvaluated analytically or numerically.
is, assume that the second derivativeb©f) are zero at the The determinant oD provides the volume factor needed
ends of the interval. Other possible boundary conditions aréor the proper normalization of the Gaussian. The tilde over
given in Refs[4,5]. Although the basis set that we consider the determinant symbol indicates the need for a special treat-
consists of cubic splines, our approach can be easily adoptedent of the determinant evaluation. Because both constant
to other smooth basis functions. and linear eigenvectors have zero eigenvalibas two zero
In our Bayesian approach we focus on the probability ofeigenvalues. Thus the actual determinanDa$ zero, which
the background having a valle at each measurement po- would make Eq.(4) useless. The proper interpretation is
sition x; represented by(b;|d,M,Z). This probability de- achieved through the addition efexc’c to the exponent in
pends on the full data seff an as-yet-unspecified model for Eg. (4), which adds a very smad to the diaftgwonal elements
the background, summarized here simply/és and all rel-  of D. The modified determinant is d&t= e2detD, with the
evant informationZ concerning the nature of the physical understanding that dexis the product of th&—2 nonzero
situation and knowledge of the experiment. We will include gigenyalues ob. For parameter estimatios,is an unimpor-
in 7 knowledge of the noise in the experimental measureiant proportionality factor and for model comparison the
ments. Also included i is the knowledge of the signal teym drops out. Thus one obtains the same results as if one
structure that we wish to exclude from background, summay, a4 started with Eqd).
rized in our spline model by the parametex, the minimum Sinceu is a nuisance parameter for our problem, accord-
distance between spline knots. Both of these speC|f|cat|0n-,§Ig to the rules of probability, it should be integrated out,
play a crucial rolg sincg they prov_ide the information that theyp o is, p(c|-)=Sdu p(u,c]-)=fdu p(clu-)p(ul-). The
model uses to discriminate the signal from the background o ingicates any applicable conditionals that do not need to
Equation(1) allows us to focus on theas the fundamen- g gpecified. This parameter can be dealt with straight away.
tal set of parameters to be estimated. According to Bayes lawp,o appropriate prior for a scale parameter, suchass
[7-9], the desired probability foc can be expressed as Jeffreys’ priorp(|Z) = 1/u, with the usual caveafd]. The
integration yields the multivariate Student’s t distribution

p(dic,&E,D)p(c|£E,T)

p(d£E,7) 2 p(c|&E,7) =7 E(detD) Y2 (E/2)(c'De) B2, (5)

p(cld,£E D)=
In this paper we allow the positions of spline kngtsto

The likelihood, p(d|c,&,E,Z), expresses the probability of vary, except forg; and &g, which are fixed ak i, andXmax.
the measurements, given their uncertainties. The priomespectively. The objective is to allow a variable degree of
p(c|&E,7), is a probabilistic statement of what we know smoothing for the background. Since thgare now param-
about the quantities of interestjn this case, independent of eters that are subject to a probabilistic treatment, we need a
the experimental data. The denominatop(d|& E,7) prior for them. We pick a general noncommittal prior by
= [dEc p(d|c,&E,T)p(c|&E,7), called the evidence, guar- assuming it is uniform over the phase space available to the
antees that the posterior has the correct normalizatiorg, [3]. For the interval fromé;=Xyin 10 Eg=Xmax, taking
JdEc p(c|d,£E,7)=1. As we shall see, the evidence plays ainto account the minimum spacingx and the required or-
central role in determining the number of spline knktn dering of the knot positions, that i§;+Ax<§,,&+AX
our adaptive model. <é3, ... &g 1+ Axs&g, the prior on & is p(§E,7)
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=Z MIE_, 0] &1+ Ax=<&c], where the functiord is unity  hood for theith measurement is
when its argument conditions are met and zero otherwise.

2) =12y — (o —v:)2/202 -
The normalization integral (2mof)Fexi —(di—y)*/20f], Gaussian,

d;

p(di[Bi.yi. D=1 Y, _
Xmax~ (E—2)Ax Xmax~ (E—3)Ax Xmax~ AX —exd —Vil, (y;=0), Poisson,
Z= dé; dés- - dée-1 dj!
Xmin+ AX £+ AX Ep_ o+ AX (8
©) where the expected value is just the background function at
is easily done, resulting in X;, namely,y;=b;. The parameterg and & do not appear
E here because their dependence is implicitly containdg in
We allow for the two most common types of measurement
—2)! = - . . .
(E-2)! kljz Olé-1TAX<&d noise corresponding to the uncorrelated Gaussian or Poisson
p(4gE,I)= (7) distributions. When the measuremenicontains a contribution

S E_DAED
[Xmas—Xmin = (E = 1)AX] from the signal, the likelihoog(d;|s; ,B; ,b; ,7) is given by

The denominator is simply the total volume of the space inthe same formula, but witl; =b; +5; .
Ply P Similar to what was done in Reff1], rather than treating

which the E—2) &, parameters can vary. The factorial in 4,5 gjgnal as a variable to be estimated, we describe the
the numerator accounts for the ordering requirement. — gjgna| probabilistically in terms of a prior. We provide for
The number of spline knot& is also variable. The prior the possibility of signals with both positive and negative

on E is chosen to have a uniform value PEna—Emin  components by writing the prior as a two-sided exponential
+1] *for all integer values oE between the minimum num-  fynction

ber, E, =2, and the maximum number,E.

=integef (Xmax—Xmin/AX]+1, where the output of the inte- \Llexd — Si s=0

ger function is the integral part of its argument. It is zero * AT

elsewhere. p(silN ¢, A_, D)= S 9
A lexg + | s<0

B. The likelihood

The first factor in the numerator of E(®), p(d|c,£E,Z),  with the restrictions\ . >0 and\_>0. In other words, we
is the likelihood of the experimental data. The data generallyntroduce two different scales for the signal, dependent on its
consist of the sum of signal and background componentssign. According to the Maximum-Entropy principle the ex-
plus a contribution from noise. The innovative idea presenteghonential prior is the least informative prior being constraint
in Ref. [1] is to treat data points containing contributions only to a given scale length,;,_=(s,, ).
from the signal as outliers when attempting to fit the back-  The likelihood for the cas®; is obtained by marginaliz-
ground. By incorporating it probabilistically and considering ing over the signal
it to be a nuisance variable, the signal is removed from the
analysis by integrating over it. This idea grew out of recent "
Bayesian approaches to the treatment of outlying data inp(di|§i'bi )= dsp(di|s; Ei,bi I)p(sihs A_,T).
which it was recognized that the presence of a wide non- —o
Gaussian tail in the likelihood function effectively reduces (10
the influence of outlier§10-13.

We introduce the propositioB; : “datum d; is purely  pq the poisson case, the lower limit must be set-g to
background” and its complemer;: “d; contains some respect the nonnegativity constraint of the Poisson likeli-
signal contribution.” The likelihood is the probability distri- hood. This integral can be evaluated analytically, yielding
bution corresponding to the measurement uncertainty, givefor the positive part of the exponential of E(), i.e., (A
the expected measuremegf, WhenB; is true, the likeli- =\.)

1 Mdi—b) —of —\(di—by)+ /2 .
_ ) TN N . Gaussian,
p(di|Bi,bi,7\,I)= "
exfbi/A]  T((di+1),b(1+\71))
IN[(1+N"Dydi+L T(d+1) , Poisson,

where T'(a,x) = [e 't* " 1dt(a>0) is the incomplete gamma function afa)=1T'(a,0) is the Gamma functiofl’(n
+1)=n!]. For the combined positive and negative signals in @, the likelihood is the sum of two contributions, one
obtained by substitutiny .. for A in Eg.(11) and the other by substitutingA _ . In the latter substitution for the Poisson case,
one must replacd ((d;+1),b;(1+Xx"%)) by I'(d;+1)—T((d;+1),b;(1-A"1)) to account for the finite lower limit of
integration.
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To complete the specification of the likelihood, we em- — g\n(d,|B,-)+ Bop(dy|B,-)]- - - This integral
ploy a mixture model9], which effectively combines the

T T — can be done analytically to obtain[%p(dﬂgl-)
probability distributions for the two possibilitié3; andB;,

+3P(d1]B1)1[3P(dy/Bs-) +3p(da|By-)]- - The effect
is the same as setting all thg equal to3.

p(dic,£E,8ND) =1 [Bp(di|Bi,c.£E B\D) The last parameter to deal with is the number of spline
' knots,E. This parameter obviously cannot be set beforehand,
+(1—ﬁ)p(d-|§ ¢.EE BN, D)] since we want the spline model to adapt to the data. How-

] | 1“1 S L] 1 ) 1

ever,E is a nuisance parameter, that is, we do not care what
(12 its value is, except to estimate thend £ parameters. Prob-
h is th bability that a dat int tai . Iability theory requires that one integrates the joint distribu-
wheref is the probability that a data point contains no signalijo, “oyer nuisance parameters. Beginning with the joint
CO”‘”bU“OTT- We will consider the paramgte&sﬁ,p , and probability distribution inc, & andE, we integrate over the
N\ _ as auxiliary parameters for the adaptive spline prOblemfirst two parameters to obtain
whose specifications will be addressed in Sec. Il C. The like-
lihood functions contributing to the mixture model are plot-
ted in Fig. 2. The sum of the two types of likelihood in the P(E|d,f)=f d®c d*"%¢p(c,&Eld,T)
mixture model for each datum results in a likelihood function
with a central peak plus a long tail. The presence of such a _
long tail has the effect of reducing the influence of outlying “f dfc d® 2¢p(d|c,£E,D)p(c.&E|D)
data points when several data points are combji€d-13.
In the case of background estimation, the result is to reduce _ E~ qE-2
the influence of points that lie outside the uncertainty band of B p(E|I)f d*c d**¢p(dc.&E.Dp(c. 4D,
the measurement errors, which presumably contain signifi- (13)
cant signal contributions. Without this tail, the resulting

curve would be drawn significantly toward the signal struc-where we have assumed that the priorscaand £ are logi-

ture and not be representative of the background. cally independent from that oB. The leading factor is the
prior for E, given in Sec. Il A. This integral is the same as
C. Determining auxiliary parameters the denominator of Bayes law for estimating the parameters,
given in Eq.(2), which is called the evidence. We define the

There are numerous parametars, o, E, 8, and\’s, that scalar
have so far been assumed to be fixed. These must be speci-
fied to perform the data analysis. It is our view that as many P(c,é)=—log[p(d|c,£&,E,7)p(c &E, D], (14
of these parameters as possible should be determined from
information about the experiment. Other parameters mawhich is the minus logarithm of the integrand in the previous
have preferred values, based on general arguments, and stljuation.
others are appropriately determined from the data. We approximatey by expanding it to second order i

In the present background estimation situation, it is im-around its maximum value at yielding a Gaussian for its
perative that the minimum knot spacidgx be determined
from knowledge of the experimental situation or by exami- 440
nation of the spectrum. This parameter should be set on thi
basis of the physicist's experience with the experiment and is
certainly no less than the instrumental resolution. Similarly,
the experimentalist must choose between Poisson and Gaus._—. e
ian likelihood functions and, in the latter case, specify theg‘w-z L ~
rms deviation of the noise, which may depend on the mea-T, ~
sured spectral amplitude. The scale of the signal expresse‘é’— o
by the\’s should also be set by the physicist on the basis ofS e
the expected signal amplitudes. If the signals are expected t&
be of one sign, that information should obviously be incor- %_104 i
porated. It is important to specify all these parameters, be™
cause they play a major role in helping the spline model ©
distinguish between background and signal.

The parameteB, which is the probability that a data point
contains just background, is one that can be specified by ¢ 4, ‘ .
general argument. Clearfy=0.5 is the noncommittal value, -40 -20
stating that each datum is equally likely to contain a signal
Contrlbutlon.or nqt. This choice can also be motivated .by AN £1G. 2. The likelihood functions for the cases that there is no
argument given in _Ref[lZ]: It was shown t_here tha'.[ if a signal present, and for positive and negative signals of seales
;eparateﬁi is associated with e‘?‘Ch data.pomt, marginaliza-_ 100 and\ , =1000. The relative contribution of the later to the
tion over the ps results in an integral of the mixtyre model12) for the likelihood is weighted by % 3, and the
form  fgdBal(1 —B1)p(da|By-)+B1p(dy1|By-)1SgdBI(L  former by,

no signal

—-— arbitrary signal
,,,,,,,,,,,, positive signal | |
- - - - negative signal
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exppnential._ Becau;e the Gaussian is restricted to a narrogf £ Since thec integration is treated analytically, only tige
region, the integration Ecan be extended-too<c<<, S0 ntegration needs to be done numerically, for example, by
that the integral oved®c can be evaluated analytically. MCMC sampling[14] from p(£d), as explained in Sec.

Equation(13) becomes IcC.
1 R R
p(E|d,Z)~Z p(E|I)f dE 2¢p(d|c,£E, D)p(c &E,T) lll. CALCULATIONAL PROCEDURE
X (27)E2de(H &)~V (15) We describe in this section the separate steps in a com-

plete calculation for any particular data set. In the innermost
loop, we need to be able to find the spline values that maxi-
mize the posteriof2), namely,c. The next higher level in-
volves finding the best knot locations for a fixedand the
highest level loop is oveE to marginalize oveE.

The argument of the determinant is the Hessibly(£)

=V V. ¢|:, theE by E matrix of second partial derivatives
of ¢ with respect tac, evaluated at its maximum with respect
to c. Becausey) is a function of bottc and§, H. is a function

of £ We will use this technique to approximate integrals

several more times. A. Estimation of spline values

The most basic calculation is to find the spline valges
D. Variance in background that maximize the posteria2), assuming particular values
The expectation value of the second moment matrik of for the knot positions§ and the auxiliary parameters
is obtained by integrating over the posterior probability of (E,3,A. ,A_). The denominator in Ed2) can be ignored at
the parameters and &, this point because it does not dependcoWhat is actually
done is to minimizey, defined in Eq.(14), with respect to
the knot valueg, which is a nonlinear optimization problem.
<bbT>:f dEc dE_Zg¢(§)CCT¢T(§)p(C,§|d') To evaluatelﬂ, we use the likelihood given in E(ﬁlZ), in-
serting the appropriate expression in Ebl) and the prior is
given in Eq.(5). Both the gradientfirst derivative and cur-
= f dEc dEF 26 d(&)ccTD®T(E)p(cl&,d-)p(&d-) vature matrix(second derivativeof ¢ are evaluated analyti-
cally. A gradient-based quasi-Newton optimization algo-
rithm is employed to minimizey. The optimization

— E-2 E T T
_f d gtb(g)“ d=cec'p(cl§,d-)| @ (£)p(£d-) algorithm we use can impose a nonnegativity constraint of

the background curve. We find that the optimization occa-
%f dE 26 d(H[H. Y H+ DT (Hp(dd) sionally stalls and the appropriate global minimuntiis not
reached because of the existence of local minima.
We have developed a new technique to enhance the con-
=f dE 2. [D(HH L (HPT(£)+b(HD'(£]p(£d-),  vergence behavior of the optimization algorithm. Our tech-
nique is based on artificially broadening the background only
(16)  part of the likelihood function during the early part of the
optimization process, which effectively eliminates local
- i minima by forcing all data points to belong to the back-
wherec is estimated as the mean valueq(fc|£,d-) for a ground. This broadening is easily accomplished for the
fixed £ The covariance matrix expressing the uncertaintieg; 4 ssjan likelihood by increasing the value of @en the
in the estimated background is then likelihood for the background term in Egll). We do not
find it necessary to resort to this technique for our Poisson

(AbADbT)=(bb") —(b)(b") examples, the PIXE data. However, a similar scheme might
be used for the Poisson case, e.g., by dividing the expected
:J dE—Zg[(p(g)Hc—l(g)(pT(g) number of county; and the measured courdsin the like-
lihood Eq.(8) by a common factor. The effect of our ap-
+A6(§)A6T(§)]p(§|d~), an proach is to increase the reach of the function being mini-

mized, which is quadratic in the case of the Gaussian
likelihood, and promote larger steps in the Newton-type op-
timization algorithm. In a little more detail, we begin the

; S/ . optimization by multiplyinge by a common factor, which is
troduced a Gaussian approximation for the integrand to d P y Pyingo" By

t of the int | itically. The first t ithin th 2hosen to make the rms value of the same as.. After
part of the integral analytically. The hrst term within the convergenceg is divided by two and the optimization is

square brackets stems from the covariances afoundc  resumed from the last operating point. This process is re-
given byHc, the Hessian of with respect tcc. The second  peated until the nominal values fer are reached. We find
term describes the covariance of th&) due to the variation that this procedure, which resembles a multiscale approach

where Ab=b—(b) and Ab=b(&) —(b). We have again in-
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used to solve geometrical optimization problehS], yields  The effective Hessiaan is actually estimated using
very robust and speedy convergence to the global minimumMCMC to draw knot positions from the probability distribu-
tion in the integral in Eq. (15, ie.,
B. Estimation of knot positions p(d|6,§,E,I)p(§|E,Z)(ZW)E’Zde(HC(g)]*l’Z. The covari-

The knot positions% are to be found by minimizing, ance matrix Hg)‘1 is estimated as the matrix of second
given in Eq.(14). This optimization problem is somewhat moments of the resulting set of MCMC sampleséof
harder than the one associated with findinghe reason lies The aim of an MCMC algorithn{14] is to generate a
in the numerous constraints on the knot positions, namelygeduence of parametesg,(k=1,2,... K) that represent
that they must be ordered and they must be no closer to ea¢gndom draws from a specified probability density distribu-
other than a specifiedx. Furthermore, there are many local tion, let us sayr(y). To add a new member to the sequence
minima in . Therefore, we use another optimization strat-Yk+1, the Metropolis algorithm consists of trying a proposed
egy, that of simulated annealin@6], to find the most prob- step away from the presernf. The proposed stepy is
able knot positions. Throughout this process, the number afirawn randomly from a symmetric distribution, and is either
knotsE is held fixed. accepted or rejected on the basis of the value af the new
The simulated annealing technique is based on a Markoposition compared to the old position. If the step is rejected,
chain Monte Carlo algorithmiMCMC) [14], described in v, ., is set equal toy,. For the step distribution we use a
more detail in the next section. The widths of the Cauchycauchy distribution, i.e.x[1+(|Ay|/W)?]~ 2, whereW is
distribution for calculating the Markov steps are fixed the full-width at half-maximum(FWHM) of the distribution
throughout the cooling process. The probability distribution[17]. with its wide tails, the Cauchy distribution occasion-
is flattened by dividingy by T, a fictitious temperature. The )y proposes large steps, which can be useful for getting out
initial temperature isST=500. When a step is acceptellis o |ocal minima. In our algorithm, only one knot position is
decreased by multiplying it by 0.95 if the new valuefs moved at a time. When a knot is moved to withlx of
smaller than any previous value, or by 0.995 if it is not. At another knot, the move is rejected. When a knot is moved
- . %ast other fixed knots, the knots are renumbered to maintain
position vectoi€ is the one that had the smallest value for e required knot ordering.
The FWHM of the Cauchy distribution is started at a
C. Marginalization over number of knots value of about one tenth the interval WidtR {,—Xmin)/(E
In probability theory, as explained in Sec. Il C, it is proper —1) and the width for each knot position is adaptively ad-
to marginalize over nuisance parameters that we do not cajested during a training run to obtain an approximate 50%
about knowing, such aB. The probability ofE is given in  acceptance rate for proposed steps. For the PIXE spectrum in
Eq. (15). Again the integrand is approximated as a Gaussiaffig. 4, the final FWHM values ranges from 1Dto 0.02. For
in & the MCMC runs to draw samples from the probability distri-
. . bution of £ cited above, on the order of 3@ycles through
P(E|d,Z)<p(E|7)p(d|c,£E,T)p(c|E,T)(2m)?detHo) ™ the full parameter set are taken. We check the performance
of our MCMC procedure by calculating the autocorrelation
X f dE 2£p(4E,T) function for each knot positiofil4]. The estimated correla-
tion lengths range from 10 to 1000 MCMC iterations. The
1 T A pivotal knot position is chosen randomly. From this, the
xex;{ (-8 HLE-9) |, (18 number of effectively independent samples from the prob-
ability density function for a run of 1iterations is from 50
whereH; is the E—2) by (E—2) Hessian matrix fory  to 5000. The simulated annealing procedure used to find the
with respect to the variablg, calculated at the optimal knot maost likely knot positions described in the preceding section
positions & The prior probability in(15) p(c,£E,7) has proceeds similarly, but with the introduction of the artificial
been replaced with the product of the prioroand the prior temperature.
on &, which is valid because these are logically independent As we shall see in our results, there are competing factors
priors. The integration here is complicated by the orderingn Eq. (19). The likelihood factorp(d|c,& E,Z) should al-
restrictions placed on thgs by the prior on given in EQ.  ways increase with increasing because the data must al-
(7). Thus, the integration is over a restricted voluMele- \yays pe matched better by the spline model with more knots

fined by the ordering requirement. The integral cannot bgyhen the knots are allowed to move. The Ockham factors for
evaluated analytically because it is impossible to simply ex-

- E/2 -1/2
tend the integration limits to infinity. Thereforéi, is re- ¢ Ap(c|§’E'Z)((EZ—7zT))/ det(HcL/g [.Eq. (] and for _§,
placed by an effective Hessia} , which must reflect the pP(£E,7)(2m) “det(H,) " typically decrease aE in-

complicated integration volumé, creases. This competition between likelihood and the priors
is the action of Ockham'’s raz¢d8—20, named after Will-
p(E|d,7)~p(E|Z)p(d|c,£E,T)p(c|E,T) iam of Ockham, whose principle states that models should be
no more complex than necessary to explain the available
X (2)detH,) Y% (&E,T) data. The overall effect is that there will be a maximum in

(E-2)! .1 the probability ofE beyond which the addition of more knots
X(2m) detHz) '~ (19 does not help represent the background significantly better.
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FIG. 4. The same PIXE spectrum as in Fig. 1, showing the most
0 ‘ - . ; . - )
5 10 15 20 probable background estimate obtained using adaptive splines in
Number of Spline Knots E which the optimal number of knots is found to be 14. In the energy

region above 0.25, the estimated background is now smooth, indi-

FIG. 3. The probability for the parameté (the number of  ¢ating a lack of evidence in the data for the oscillations visible in
spline knot$ given by Eq.(15), shown as the solid curve, with its  Fig. 1.

various contributions. The maximum probability occursEat 14

knots. dynamic range of this plot. The likelihoog(d|c, & E,Z) in-

creases monotonically with since the fit to the data always
improves with more knots. The Ockham factor for

The uncertainty bound on the estimated background funcp(c| £,E,7) (2 ) ¥2det(H,) ~ Y2 [Eq. (5)] decreases gradually
tion may be calculated as described in Sec. Il D. Equatioyver the range oE shown. The corresponding factor fér
(16) shows how the covariance in the estimatesifas ob- P(ZE,T)(2m)E /det(Hy) 2 decreases substantially.

tained by splitting the covariance into two terms, one arisingrpe net result is a strong peak in the probabilityEat 14,
from the uncertainties i for fixed £ and the other from \yhich contains a probability of 80%. Since most of the prob-
uncertainties in£&. The contribution from the first term is ability falls into the singleE=14 bin, we may legitimately
based on the analytic expression for the Hesslanwhich  fix £ at 14, instead of marginalizing ové, to obtain the
can be evaluated for ang. The rest of the calculation in- i) background estimates.

volves randomly drawing samples frop(£[d) using the The background estimate with the highest posterior prob-
Markov Chain Monte Carl{MCMC) technique described apjlity obtained in the simulated annealing search for the
above. For eaclf drawn, the optimunt has to be found most probable knot position is shown in Fig 4. The high-
using the minimization procedure described above. Then, thenergy portion of the spectrum is now fit with a smooth

spline values at the data points are obtainee:d®c. The background, consistent with a physicist's expectation. It is
integration in Eq.(16) is accomplished by averaging the remarkable that our model requires only one additional

quantity within the square brackets in the integrand over thépline knot to fit the energy region above 0.25. It is also
£ samples. interesting to note that the background under the first signifi-

cant peak at an energy of approximately 0.06 is smoother
IV. RESULTS and more plausible than for the previous analysis. The place-
ment of the knots is of interest. The highest knot density
We now describe the results of applying the analysis outeccurs in the vicinities of the three major peaks in the back-
lined in the preceding section to the PIXE data shown in Figground. While these seem like fairly smooth sections of the
1. For this analysis the underlying auxiliary parameters, debackground on this semilog plot, the curve varies somewhat
scribed in Sec. Il C, are the same as used in the previousiore rapidly in the linear space in which it is modeled.
analysis shown in Fig. 1. The minimum distance betweerThese adaptive background estimates are very plausible.
knots isAx = 0.015, the approximate width of the conspicu-  The rms uncertainties in the estimated background curve
ous signal peaks at their base. Because we know that tt&re summarized in Fig. 5 as uncertainty bounds. These are
signal peaks in the PIXE spectrum must be positive, we exeerived from Eq.(16) by combining the variances from un-
clude the contribution of negative signals to the likelihood,certainties inc using the analytic part for fixed knots plus
in effect settingh_=0. The scalex . should be derived uncertainties arising from the knot positio§sobtained by
from the signal[1]. As the signal is much larger than the numerical integration over the possible knot positions. First
background, we set. equal to the average value of the dataof all, we see that the uncertainties are quite small compared
set, about 270 in this case. Figure 3 shows the probabilityith the background itself, on the order of a few percent in
distribution forE given in Eq.(19). Note the extremely large the peak regions and about an order of magnitude smaller in

D. Estimation of uncertainties in background
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FIG. 5. The uncertainties in the background function displayed
in Fig. 4. The separate contributions to the rms deviation of the FIG. 6. (& An MVV Auger spectrum for iron. The estimated
background values are shown; from the uncertainties incthad background shown is that obtained for the transformed spectrum
the variance arising from the knot positiofis shown in(b). (b) A logarithmic transformation of the Auger spec-
trum shown in(a) reduces the curvature of the background, render-

the high-energy end of the spectrum. The uncertainties duig it suitable for the. general approach presented her_e. The esti-
to those inc dominate at the first significant peak and in theMated background is showr(c) The signal determined by
high-energy tail. However, the uncertainties arising fromsubtractlng the estimated background from the original spectrum.

knot placement are most important around the two signa he inset in(c) shows the autocorrelation of the signal vs energy

peaks in the spectrum around an energy of 0.2. Clearly, n8n‘ference. A significant secondary peak is seen at an energy offset
) . o of 39 eV.
simple formula based on a single contribution to the total

uncertainty applies.

The uncertainty bands shown in Fig. 5 actually corre-be smooth, it varies quite rapidly at low energies. This be-
spond to the square root of the diagonal terms of the covarihavior is inconsistent with our general background model,
ance ofb given in Eq.(16). These are useful for showing the whose prior is based on the second derivative of the back-
limits of uncertainty of the curve, but are not applicable forground. However, a simple transformation of the measured
estimating the consequences of these uncertainties in ttspectrum brings the background into conformance with our
background on further computation, e.g., on the areas unddsackground model and does not dilute the signal character-
a signal peak. For that, the full covariance matrix is requiredstics unduly. By taking the logarithm of the measured spec-
because one expects a significant degree of correlation in tHeum, the nearly exponential rise of the spectrum is trans-
uncertainties from one position to another. For exampleformed into an approximately linear dependence that is more
when two points lie near each other in the same spline intereasily accommodated by the background model. Further-
val, there is a strong positive correlation in their uncertaintiesnore, such a transformation of the ordinate does not change
because their estimates both rely on the same cubic splirtee width of the signal structure, leaving unchanged the
curve. It is feasible to calculate the full covariance matrixminimum knot separation criterion. As a general principle
using Eq.(16), but not so easy to display it. for applying our model to a specific spectrum, it may be

To demonstrate how well our background method workgransformed to bring the background into conformance with
for signals with both positive and negative contributions, wethe background model, provided the signal contributions do
turn to the Auger spectrum shown in Figag This spectrum not lose their assumed rapid and localized characteristics.
was obtained for an iron sample using a four-grid low-energyFor example, we find that taking the square root of the hori-
electron diffractionLEED) optics, operated in the retarding- zontal scale, after a suitable offset, yields a data record that
field mode. Harmonic modulation of the retarding potentialalso provided reasonable estimates of the background.
and lock-in detection of the transmitted current on the second Figure &b) shows the Auger spectrum after the transfor-
harmonic of the modulation frequency results in spectra asnation z(k) =log[a—y(K)], wherey(k) is the original spec-
shown in Fig. 6a). Such spectra constitute the energy deriva-tral amplitude andh is a constant{=340 in this case The
tive of the sum of the Auger electron energy distribution, theuncertainties in the transformed spectrum are obtained by
signal, and the slowly varying, much larger secondary elecdividing the uncertainties in the original spectrum by a
tron energy distribution, the background. The signal contains-y (k). o; is estimated to be approximately 35 over the en-
both positive and negative components. For quantitative Autire spectrum. The transformed spectrum is analyzed using
ger analysis it is mandatory to separate the two contributionthe background models described earlier. The minimum knot
to the total signal21,22. The principal signal seen at 47 eV separation is set atx = 15 eV. In this analysis\ , and\ _
comes from arM, 3VV Auger transition. are assumed to be equal because the positive and negative

It is evident from Fig. 6 that, while the background may signals are expected to have approximately the same ampli-
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tudes. They are set to a typical value of about 0.1. The evibackground subtraction even helps one identify the presence
dence evaluation of Eq19) shows thatp(E|d,Z) is rather  of less apparent signals in an Auger spectrum.

flat for the number of nodes betwedt=8 and E=E,,
=12. The lack of a strong peak in the evidence, as seen in
the earlier PIXE analysis, may be explained as follows. The We have developed a probabilistic model to separate the
prior on &, given in Eq.(7), increases considerably &  background from signals in spectra. The general assumptions
approacheg ., because of the decreasing available volumeare that the background varies smoothly and that each rap-
for knots. This effect is partly counteracted by the decreasindfly varying signal peak is confined to a well-defined inter-
volume given byH,, but not completely. Thus, the Ockham val. The background is represented by a cubic spline basis.
factor pertaining tot may effectively increase with increas- In order to allow the smoothness of the background to ac-

. . . . . C

ing E, a behavior that is unexpect(_ad, but pIaus!b_Ie. Itis nOtknots and their position to vary. Our Bayesian approach pro-
the number of parameters that deflng the penalizing OCkhar\‘/Tdes a straightforward way to deal with this adaptivity by
factor but the phase space of the prior covered by the highyarginalizing over the probability of the number of knots.
likelihood region, which may increase when the parameterghe effect of Ockham'’s factor is to produce a maximum in
are highly correlated. As the likelihood probability increasesthis probability. We have further extended the earlier work
insignificantly forE=8, we show the background estimated by incorporating signals with either positive or negative
for E=8. The results foE>8 lie within the line thickness components, or both. The uncertainties in the estimated
of the results folE=8. Thus marginalization ovef would  background have also been shown.

yield quite the same result. The estimated background is

shown in Fig. 6b), and is transformed back into Fig(a for ACKNOWLEDGMENTS
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V. SUMMARY

ommodate the data, we have allowed the number of spline
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