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Background estimation in experimental spectra
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A general probabilistic technique for estimating background contributions to measured spectra is presented.
A Bayesian model is used to capture the defining characteristics of the problem, namely, that the background
is smoother than the signal. The signal is allowed to have positive and/or negative components. The back-
ground is represented in terms of a cubic spline basis. A variable degree of smoothness of the background is
attained by allowing the number of knots and the knot positions to be adaptively chosen on the basis of the
data. The fully Bayesian approach taken provides a natural way to handle knot adaptivity and allows uncer-
tainties in the background to be estimated. Our technique is demonstrated on a particle induced x-ray emission
spectrum from a geological sample and an Auger spectrum from iron, which contains signals with both
positive and negative components.

PACS number~s!: 02.50.Rj, 07.60.2j, 29.30.Kv
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I. INTRODUCTION

Quantitative spectral analysis often relies on being abl
subtract from the data the contribution from the backgrou
In a previous paper, von der Lindenet al. @1# presented a
general approach to estimating a background containe
spectral data that was based on the assumption that the s
varies much more rapidly than the background. In that w
the background was represented by a sequence of c
splines with equally spaced knots. The minimum knot sp
ing was determined by the width of the signal structure t
one wishes to exclude from the background curve.

This paper extends the earlier work in two important
rections; first by employing adaptive splines to represent
background, which is achieved by allowing the number
spline knots to vary in accordance with the requirements
the data, and secondly, by handling bipolar signals, i.e.,
nals with positive and negative components. We also add
several calculational issues, including the improvemen
the convergence procedure to determine the spline am
tudes.

We motivate our improvements by referring to a graph
the results from Ref.@1# showing a particle induced x-ra
emission ~PIXE! spectrum and the estimated backgrou
function. The data in Fig. 1 are displayed on a logarithm
scale to exhibit a deficiency in the previous results, alre
pointed out in Ref.@2#. At the high-energy end of the spec
trum, which contains no apparent signal structure, the e
mated background has many oscillations. These oscillat
do not appear to be supported by the data, given their la
uncertainties. Although the wiggles in this tail region of t
spectrum do not pose a problem for interpreting this data
they demonstrate an inherent problem in the previous
proach, which could degrade its estimates underneath si
peaks. Our primary goal here is to avoid this spurious beh
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ior in the estimated background. The approach we take i
allow the number of knots and their placement to adapt to
requirements of the data, similar to what was used before
deblurring@3#.

Another objective of this paper is to demonstrate th
with a minor modification to the method presented in R
@1#, it is possible to cope with signals with positive and neg
tive components. We demonstrate this capability on an A
ger spectrum. We refer the reader to the earlier paper@1# for
details that we omit here.

II. BAYESIAN APPROACH TO BACKGROUND
ESTIMATION

The general idea that we wish to capture with our Ba
sian model is that a spectrum consists of a smooth ba
ground with additive signal peaks that are relatively co

FIG. 1. A PIXE spectrum for a geological sample with the bac
ground estimate obtained in Ref.@1# using 35 evenly spaced splin
knots. The oscillations in the estimated background above the
ergy of 0.25 seem unwarranted, given the large uncertainties in
measurements in this region.
1152 ©2000 The American Physical Society
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PRE 61 1153BACKGROUND ESTIMATION IN EXPERIMENTAL SPECTRA
pact. We seek a curveb(x), defined over an interval from
xmin to xmax, that describes the background under a sp
trum, which is discretely sampled at positionsxi over the
same interval. The measured values of the spectrum at t
points are designateddi , collectively referred to as the vec
tor d. To cover a wide range of applications, we identify t
background by the fact that it is smoother than the sign
More restrictive specifications are certainly possible fo
restricted class of problems and can be dealt with in a sim
fashion. The smoothness of the background is ensured
expanding it in terms of a set of cubic spline functions

bi5 (
n51

E

f~xi ,jn!cn5 (
n51

E

F i ,ncn ~1!

or in vector notationb5Fc. Thecn are the spline values a
the E knot positionsjn . The transformationf(xi ,jn) de-
pends on the vectorsj and x and, hence, the matrixF de-
pends on these vectors. Without going into detail, we use
results of spline theory@4–6# to determine the elements o
F. An implicit assumption must be made about the curve
the end points. We choose the natural spline condition,
is, assume that the second derivatives ofb(x) are zero at the
ends of the interval. Other possible boundary conditions
given in Refs.@4,5#. Although the basis set that we consid
consists of cubic splines, our approach can be easily ado
to other smooth basis functions.

In our Bayesian approach we focus on the probability
the background having a valuebi at each measurement po
sition xi represented byp(bi ud,M,I). This probability de-
pends on the full data setd, an as-yet-unspecified model fo
the background, summarized here simply asM, and all rel-
evant informationI concerning the nature of the physic
situation and knowledge of the experiment. We will inclu
in I knowledge of the noise in the experimental measu
ments. Also included inI is the knowledge of the signa
structure that we wish to exclude from background, summ
rized in our spline model by the parameterDx, the minimum
distance between spline knots. Both of these specificat
play a crucial role since they provide the information that
model uses to discriminate the signal from the backgrou

Equation~1! allows us to focus on thec as the fundamen
tal set of parameters to be estimated. According to Bayes
@7–9#, the desired probability forc can be expressed as

p~cud,j,E,I!5
p~duc,j,E,I!p~cuj,E,I!

p~duj,E,I!
. ~2!

The likelihood, p(duc,j,E,I), expresses the probability o
the measurements, given their uncertainties. The pr
p(cuj,E,I), is a probabilistic statement of what we kno
about the quantities of interest,c in this case, independent o
the experimental data. The denominator,p(duj,E,I)
5*dEc p(duc,j,E,I)p(cuj,E,I), called the evidence, guar
antees that the posterior has the correct normalizat
*dEc p(cud,j,E,I)51. As we shall see, the evidence plays
central role in determining the number of spline knotsE in
our adaptive model.
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A. The prior probabilities

The distinguishing characteristic of the background t
we wish to exploit is its smoothness. In the earlier work@1#,
the prior on the background used to express its smooth
was based on the integral of the square of the slope of
background. That prior is inconsistent with the cubic splin
used to represent the background, which are known to m
mize the integral of the square of the second derivati
Therefore, we now use the more appropriate prior

p~bum,I!5
1

Z
expH 2mE dxUb9~x!U2J , ~3!

whereb9(x) is the second derivative of the background fun
tion at x. This prior has the additional advantage over t
previous one that it does not penalize linear backgroun
The factorZ is included for normalization. The positive pa
rameterm controls the width of this prior distribution.

The expansion in Eq.~1! yields for the prior

p~cum,j,E,I!5p2E/2mE/2~det̃D!1/2exp$2mcTDc%, ~4!

where Dn1 ,n2
5*dx fn1

9 (x)fn2
9 (x). The matrix D can be

evaluated analytically or numerically.
The determinant ofD provides the volume factor neede

for the proper normalization of the Gaussian. The tilde o
the determinant symbol indicates the need for a special tr
ment of the determinant evaluation. Because both cons
and linear eigenvectors have zero eigenvalue,D has two zero
eigenvalues. Thus the actual determinant ofD is zero, which
would make Eq.~4! useless. The proper interpretation
achieved through the addition of2emcTc to the exponent in
Eq. ~4!, which adds a very smalle to the diagonal element
of D. The modified determinant is detD5e2det̃D, with the
understanding that det˜ D is the product of theE22 nonzero
eigenvalues ofD. For parameter estimation,e is an unimpor-
tant proportionality factor and for model comparison t
term drops out. Thus one obtains the same results as if
had started with Eq.~4!.

Sincem is a nuisance parameter for our problem, acco
ing to the rules of probability, it should be integrated o
that is, p(cu•)5*dm p(m,cu•)5*dm p(cum•)p(mu•). The
dot indicates any applicable conditionals that do not need
be specified. This parameter can be dealt with straight aw
The appropriate prior for a scale parameter, such asm, is
Jeffreys’ priorp(muI)}1/m, with the usual caveats@1#. The
integration yields the multivariate Student’s t distribution

p~cuj,E,I!5p2E/2~det̃D!1/2G~E/2!~cTDc!2E/2. ~5!

In this paper we allow the positions of spline knotsjn to
vary, except forj1 andjE , which are fixed atxmin andxmax,
respectively. The objective is to allow a variable degree
smoothing for the background. Since thejn are now param-
eters that are subject to a probabilistic treatment, we nee
prior for them. We pick a general noncommittal prior b
assuming it is uniform over the phase space available to
jn @3#. For the interval fromj1[xmin to jE[xmax, taking
into account the minimum spacingDx and the required or-
dering of the knot positions, that isj11Dx<j2 ,j21Dx
<j3 , . . . ,jE211Dx<jE , the prior on j is p(juE,I)
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5Z21)k52
E u@jk211Dx<jk#, where the functionu is unity

when its argument conditions are met and zero otherw
The normalization integral

Z5E
xmin1Dx

xmax2(E22)Dx

dj2E
j21Dx

xmax2(E23)Dx

dj3•••E
jE221Dx

xmax2Dx

djE21

~6!

is easily done, resulting in

p~juE,I!5

~E22!! )
k52

E

u@jk211Dx<jk#

@xmax2xmin2~E21!Dx# (E22)
. ~7!

The denominator is simply the total volume of the space
which the (E22) jn parameters can vary. The factorial
the numerator accounts for the ordering requirement.

The number of spline knotsE is also variable. The prior
on E is chosen to have a uniform value of@Emax2Emin
11#21 for all integer values ofE between the minimum num
ber, Emin52, and the maximum number, Emax
5integer@(xmax2xmin)/Dx#11, where the output of the inte
ger function is the integral part of its argument. It is ze
elsewhere.

B. The likelihood

The first factor in the numerator of Eq.~2!, p(duc,j,E,I),
is the likelihood of the experimental data. The data gener
consist of the sum of signal and background compone
plus a contribution from noise. The innovative idea presen
in Ref. @1# is to treat data points containing contributio
from the signal as outliers when attempting to fit the ba
ground. By incorporating it probabilistically and considerin
it to be a nuisance variable, the signal is removed from
analysis by integrating over it. This idea grew out of rece
Bayesian approaches to the treatment of outlying data
which it was recognized that the presence of a wide n
Gaussian tail in the likelihood function effectively reduc
the influence of outliers@10–13#.

We introduce the propositionBi : ‘‘datum di is purely
background’’ and its complementB̄i : ‘‘ di contains some
signal contribution.’’ The likelihood is the probability distri
bution corresponding to the measurement uncertainty, g
the expected measurement,yi . When Bi is true, the likeli-
e.

n

ly
s,
d

-

e
t
in
-

n

hood for thei th measurement is

p~di uBi ,yi ,I!5H ~2ps i
2!21/2exp@2~di2yi !

2/2s i
2#, Gaussian,

yi
di

di !
exp@2yi #, ~yi>0!, Poisson,

~8!

where the expected value is just the background functio
xi , namely,yi5bi . The parametersE and j do not appear
here because their dependence is implicitly contained inbi .
We allow for the two most common types of measurem
noise corresponding to the uncorrelated Gaussian or Poi
distributions. When the measurement contains a contribu
from the signal, the likelihoodp(di usi ,B̄i ,bi ,I) is given by
the same formula, but withyi5bi1si .

Similar to what was done in Ref.@1#, rather than treating
the signal as a variable to be estimated, we describe
signal probabilistically in terms of a prior. We provide fo
the possibility of signals with both positive and negati
components by writing the prior as a two-sided exponen
function

p~si ul1 ,l2 ,I!55 l1
21expF2

si

l1
G , si>0,

l2
21expF1

si

l2
G , si,0

~9!

with the restrictionsl1.0 andl2.0. In other words, we
introduce two different scales for the signal, dependent on
sign. According to the Maximum-Entropy principle the e
ponential prior is the least informative prior being constra
only to a given scale lengthl1/25^s1/2&.

The likelihood for the caseB̄i is obtained by marginaliz-
ing over the signal

p~di uB̄i ,bi ,I!5E
2`

`

dsip~di usi ,B̄i ,bi ,I!p~si ul1 ,l2 ,I!.

~10!

For the Poisson case, the lower limit must be set to2bi to
respect the nonnegativity constraint of the Poisson lik
hood. This integral can be evaluated analytically, yieldi
for the positive part of the exponential of Eq.~9!, i.e., (l
5l1)
e
e,
p~di uB̄i ,bi ,l,I!55
1

2ulu H 11erfFl~di2bi !2s i
2

uluA2s i
2 G J expF2l~di2bi !1s i

2/2

l2 G , Gaussian,

exp@bi /l#

ulu~11l21!di11

G„~di11!,bi~11l21!…

G~di11!
, Poisson,

~11!

where G(a,x)5*x
`e2tta21dt(a.0) is the incomplete gamma function andG(a)5G(a,0) is the Gamma function@G(n

11)5n! #. For the combined positive and negative signals in Eq.~9!, the likelihood is the sum of two contributions, on
obtained by substitutingl1 for l in Eq. ~11! and the other by substituting2l2 . In the latter substitution for the Poisson cas
one must replaceG„(di11),bi(11l21)… by G(di11)2G„(di11),bi(12l2

21)… to account for the finite lower limit of
integration.
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PRE 61 1155BACKGROUND ESTIMATION IN EXPERIMENTAL SPECTRA
To complete the specification of the likelihood, we em
ploy a mixture model@9#, which effectively combines the
probability distributions for the two possibilitiesBi and B̄i ,

p~duc,j,E,b,l,I!5)
i

@bp~di uBi ,c,j,E,b,l,I!

1~12b!p~di uB̄i ,c,j,E,b,l,I!#,

~12!

whereb is the probability that a data point contains no sign
contribution. We will consider the parametersE,b,l1 , and
l2 as auxiliary parameters for the adaptive spline proble
whose specifications will be addressed in Sec. II C. The li
lihood functions contributing to the mixture model are plo
ted in Fig. 2. The sum of the two types of likelihood in th
mixture model for each datum results in a likelihood functi
with a central peak plus a long tail. The presence of suc
long tail has the effect of reducing the influence of outlyi
data points when several data points are combined@10–13#.
In the case of background estimation, the result is to red
the influence of points that lie outside the uncertainty band
the measurement errors, which presumably contain sig
cant signal contributions. Without this tail, the resultin
curve would be drawn significantly toward the signal stru
ture and not be representative of the background.

C. Determining auxiliary parameters

There are numerous parametersDx, s, E, b, andl ’s, that
have so far been assumed to be fixed. These must be s
fied to perform the data analysis. It is our view that as ma
of these parameters as possible should be determined
information about the experiment. Other parameters m
have preferred values, based on general arguments, and
others are appropriately determined from the data.

In the present background estimation situation, it is i
perative that the minimum knot spacingDx be determined
from knowledge of the experimental situation or by exam
nation of the spectrum. This parameter should be set on
basis of the physicist’s experience with the experiment an
certainly no less than the instrumental resolution. Simila
the experimentalist must choose between Poisson and G
ian likelihood functions and, in the latter case, specify
rms deviation of the noise, which may depend on the m
sured spectral amplitude. The scale of the signal expre
by thel ’s should also be set by the physicist on the basis
the expected signal amplitudes. If the signals are expecte
be of one sign, that information should obviously be inc
porated. It is important to specify all these parameters,
cause they play a major role in helping the spline mo
distinguish between background and signal.

The parameterb, which is the probability that a data poin
contains just background, is one that can be specified b
general argument. Clearlyb50.5 is the noncommittal value
stating that each datum is equally likely to contain a sig
contribution or not. This choice can also be motivated by
argument given in Ref.@12#. It was shown there that if a
separateb i is associated with each data point, marginaliz
tion over the bs results in an integral of the
form *0

1db1@(1 2b1)p(d1uB̄1•)1b1p(d1uB1•)#*0
1db2@(1
-

l
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2 b2)p(d2uB̄2•)1b2p(d2uB2•)#•••. This integral

can be done analytically to obtain@ 1
2 p(d1uB̄1•)

1 1
2 p(d1uB1•)#@ 1

2 p(d2uB̄2•)1 1
2 p(d2uB2•)#•••. The effect

is the same as setting all theb i equal to1
2 .

The last parameter to deal with is the number of spl
knots,E. This parameter obviously cannot be set beforeha
since we want the spline model to adapt to the data. Ho
ever,E is a nuisance parameter, that is, we do not care w
its value is, except to estimate thec andj parameters. Prob
ability theory requires that one integrates the joint distrib
tion over nuisance parameters. Beginning with the jo
probability distribution inc, j, andE, we integrate over the
first two parameters to obtain

p~Eud,I!5E dEc dE22jp~c,j,Eud,I!

}E dEc dE22jp~duc,j,E,I!p~c,j,EuI!

5p~EuI!E dEc dE22j p~duc,j,E,I!p~c,juE,I!,

~13!

where we have assumed that the priors onc andj are logi-
cally independent from that onE. The leading factor is the
prior for E, given in Sec. II A. This integral is the same a
the denominator of Bayes law for estimating the paramet
given in Eq.~2!, which is called the evidence. We define th
scalar

c~c,j!52 log@p~duc,j,E,I!p~c,juE,I!#, ~14!

which is the minus logarithm of the integrand in the previo
equation.

We approximatec by expanding it to second order inc
around its maximum value atĉ yielding a Gaussian for its

FIG. 2. The likelihood functions for the cases that there is
signal present, and for positive and negative signals of scalesl2

510s andl15100s. The relative contribution of the later to th
mixture model~12! for the likelihood is weighted by 12b, and the
former byb.
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1156 PRE 61FISCHER, HANSON, DOSE, AND von der LINDEN
exponential. Because the Gaussian is restricted to a na
region, the integration can be extended to2`,c,`, so
that the integral overdEc can be evaluated analytically
Equation~13! becomes

p~Eud,I!'
1

Z
p~EuI!E dE22j p~duĉ,j,E,I!p~ ĉ,juE,I!

3~2p!E/2det„Hc~j!…21/2. ~15!

The argument of the determinant is the Hessian,Hc(j)
5¹c¹c

Tcu ĉ , theE by E matrix of second partial derivative
of c with respect toc, evaluated at its maximum with respe
to c. Becausec is a function of bothc andj, Hc is a function
of j. We will use this technique to approximate integra
several more times.

D. Variance in background

The expectation value of the second moment matrix ob
is obtained by integrating over the posterior probability
the parametersc andj,

^bbT&5E dEc dE22j F~j!ccTFT~j!p~c,jud• !

5E dEc dE22j F~j!ccTFT~j!p~cuj,d• !p~jud• !

5E dE22j F~j!F E dEcccTp~cuj,d• !GFT~j!p~jud• !

'E dE22j F~j!@Hc
21~j!1 ĉĉT#FT~j!p~jud• !

5E dE22j @F~j!Hc
21~j!FT~j!1b̂~j!b̂T~j!#p~jud• !,

~16!

where ĉ is estimated as the mean value ofp(cuj,d •) for a
fixed j. The covariance matrix expressing the uncertain
in the estimated background is then

^DbDbT&5^bbT&2^b&^bT&

5E dE22j@F~j!Hc
21~j!FT~j!

1Db̂~j!Db̂T~j!#p~jud • !, ~17!

whereDb5b2^b& and Db̂5b̂(j)2^b&. We have again in-
troduced a Gaussian approximation for the integrand to
part of the integral analytically. The first term within th
square brackets stems from the covariances ofc around ĉ
given byHc , the Hessian ofc with respect toc. The second
term describes the covariance of theb̂(j) due to the variation
ow

f

s

o

of j. Since thec integration is treated analytically, only thej
integration needs to be done numerically, for example,
MCMC sampling @14# from p(jud), as explained in Sec
III C.

III. CALCULATIONAL PROCEDURE

We describe in this section the separate steps in a c
plete calculation for any particular data set. In the innerm
loop, we need to be able to find the spline values that ma

mize the posterior~2!, namely,ĉ. The next higher level in-
volves finding the best knot locations for a fixedE and the
highest level loop is overE to marginalize overE.

A. Estimation of spline values

The most basic calculation is to find the spline valuec
that maximize the posterior~2!, assuming particular value
for the knot positionsj and the auxiliary parameter
(E,b,l1 ,l2). The denominator in Eq.~2! can be ignored at
this point because it does not depend onc. What is actually
done is to minimizec, defined in Eq.~14!, with respect to
the knot valuesc, which is a nonlinear optimization problem
To evaluatec, we use the likelihood given in Eq.~12!, in-
serting the appropriate expression in Eq.~11! and the prior is
given in Eq.~5!. Both the gradient~first derivative! and cur-
vature matrix~second derivative! of c are evaluated analyti
cally. A gradient-based quasi-Newton optimization alg
rithm is employed to minimizec. The optimization
algorithm we use can impose a nonnegativity constrain
the background curve. We find that the optimization oc
sionally stalls and the appropriate global minimum inc is not
reached because of the existence of local minima.

We have developed a new technique to enhance the
vergence behavior of the optimization algorithm. Our tec
nique is based on artificially broadening the background o
part of the likelihood function during the early part of th
optimization process, which effectively eliminates loc
minima by forcing all data points to belong to the bac
ground. This broadening is easily accomplished for
Gaussian likelihood by increasing the value of thes in the
likelihood for the background term in Eq.~11!. We do not
find it necessary to resort to this technique for our Pois
examples, the PIXE data. However, a similar scheme m
be used for the Poisson case, e.g., by dividing the expe
number of countsyi and the measured countsdi in the like-
lihood Eq. ~8! by a common factor. The effect of our ap
proach is to increase the reach of the function being m
mized, which is quadratic in the case of the Gauss
likelihood, and promote larger steps in the Newton-type o
timization algorithm. In a little more detail, we begin th
optimization by multiplyings by a common factor, which is
chosen to make the rms value ofs the same asl. After
convergence,s is divided by two and the optimization i
resumed from the last operating point. This process is
peated until the nominal values fors are reached. We find
that this procedure, which resembles a multiscale appro



um

t

el
ea
al
at

r

ko

h
d

on
e

A
n

er
ca

ia

t

e
in

b
ex

-

d

u-
ce
ed

er

ed,
a

n-
out
is

ved
tain

a

d-
%

m in

ri-

nce
on
-
he
he
ob-

the
ion
al

tors

l-
ots
for

iors

be
ble
in
s
ter.

PRE 61 1157BACKGROUND ESTIMATION IN EXPERIMENTAL SPECTRA
used to solve geometrical optimization problems@15#, yields
very robust and speedy convergence to the global minim

B. Estimation of knot positions

The knot positionsĵ are to be found by minimizingc,
given in Eq. ~14!. This optimization problem is somewha
harder than the one associated with findingĉ. The reason lies
in the numerous constraints on the knot positions, nam
that they must be ordered and they must be no closer to
other than a specifiedDx. Furthermore, there are many loc
minima in c. Therefore, we use another optimization str
egy, that of simulated annealing@16#, to find the most prob-
able knot positions. Throughout this process, the numbe
knotsE is held fixed.

The simulated annealing technique is based on a Mar
chain Monte Carlo algorithm~MCMC! @14#, described in
more detail in the next section. The widths of the Cauc
distribution for calculating the Markov steps are fixe
throughout the cooling process. The probability distributi
is flattened by dividingc by T, a fictitious temperature. Th
initial temperature isT5500. When a step is accepted,T is
decreased by multiplying it by 0.95 if the new value ofc is
smaller than any previous value, or by 0.995 if it is not.
the end of the full annealing sequence, the estimated k
position vectorĵ is the one that had the smallest value forc.

C. Marginalization over number of knots

In probability theory, as explained in Sec. II C, it is prop
to marginalize over nuisance parameters that we do not
about knowing, such asE. The probability ofE is given in
Eq. ~15!. Again the integrand is approximated as a Gauss
in j

p~Eud,I!}p~EuI!p~duĉ,ĵ,E,I!p~ ĉuE,I!~2p!E/2det~Hc!
21/2

3E dE22j p~juE,I!

3expF2
1

2
~j2 ĵ!THj~j2 ĵ!G , ~18!

where Hj is the (E22) by (E22) Hessian matrix forc
with respect to the variablej, calculated at the optimal kno
positions ĵ. The prior probability in~15! p(c,juE,I) has
been replaced with the product of the prior onc and the prior
on j, which is valid because these are logically independ
priors. The integration here is complicated by the order
restrictions placed on thej is by the prior onj given in Eq.
~7!. Thus, the integration is over a restricted volumeV de-
fined by the ordering requirement. The integral cannot
evaluated analytically because it is impossible to simply
tend the integration limits to infinity. Therefore,Hj is re-
placed by an effective HessianHj* , which must reflect the
complicated integration volumeV,

p~Eud,I!'p~EuI!p~duĉ,ĵ,E,I!p~ ĉuE,I!

3~2p!E/2det~Hc!
21/2p~ ĵuE,I!

3~2p!(E22)/2det~Hj* !21/2. ~19!
.
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The effective HessianHj* is actually estimated using
MCMC to draw knot positions from the probability distribu
tion in the integral in Eq. ~15!, i.e.,

p(duĉ,j,E,I)p(juE,I)(2p)E/2det@Hc(j)#21/2. The covari-
ance matrix (Hj* )21 is estimated as the matrix of secon
moments of the resulting set of MCMC samples ofj.

The aim of an MCMC algorithm@14# is to generate a
sequence of parametersyk ,(k51,2, . . . ,K) that represent
random draws from a specified probability density distrib
tion, let us sayp(y). To add a new member to the sequen
yk11, the Metropolis algorithm consists of trying a propos
step away from the presentyk . The proposed stepDy is
drawn randomly from a symmetric distribution, and is eith
accepted or rejected on the basis of the value ofp at the new
position compared to the old position. If the step is reject
yk11 is set equal toyk . For the step distribution we use
Cauchy distribution, i.e.,}@11(uDyu/W)2#21, whereW is
the full-width at half-maximum~FWHM! of the distribution
@17#. With its wide tails, the Cauchy distribution occasio
ally proposes large steps, which can be useful for getting
of local minima. In our algorithm, only one knot position
moved at a time. When a knot is moved to withinDx of
another knot, the move is rejected. When a knot is mo
past other fixed knots, the knots are renumbered to main
the required knot ordering.

The FWHM of the Cauchy distribution is started at
value of about one tenth the interval width (xmax2xmin)/(E
21) and the width for each knot position is adaptively a
justed during a training run to obtain an approximate 50
acceptance rate for proposed steps. For the PIXE spectru
Fig. 4, the final FWHM values ranges from 1024 to 0.02. For
the MCMC runs to draw samples from the probability dist
bution of j cited above, on the order of 105 cycles through
the full parameter set are taken. We check the performa
of our MCMC procedure by calculating the autocorrelati
function for each knot position@14#. The estimated correla
tion lengths range from 10 to 1000 MCMC iterations. T
pivotal knot position is chosen randomly. From this, t
number of effectively independent samples from the pr
ability density function for a run of 105 iterations is from 50
to 5000. The simulated annealing procedure used to find
most likely knot positions described in the preceding sect
proceeds similarly, but with the introduction of the artifici
temperature.

As we shall see in our results, there are competing fac

in Eq. ~19!. The likelihood factorp(duĉ,ĵ,E,I) should al-
ways increase with increasingE because the data must a
ways be matched better by the spline model with more kn
when the knots are allowed to move. The Ockham factors

ĉ, p( ĉuj,E,I)(2p)E/2det(Hc)
21/2 @Eq. ~5!# and for j,

p( ĵuE,I)(2p)(E22)/2det(Hj)
21/2 typically decrease asE in-

creases. This competition between likelihood and the pr
is the action of Ockham’s razor@18–20#, named after Will-
iam of Ockham, whose principle states that models should
no more complex than necessary to explain the availa
data. The overall effect is that there will be a maximum
the probability ofE beyond which the addition of more knot
does not help represent the background significantly bet
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D. Estimation of uncertainties in background

The uncertainty bound on the estimated background fu
tion may be calculated as described in Sec. II D. Equa
~16! shows how the covariance in the estimates forb is ob-
tained by splitting the covariance into two terms, one aris
from the uncertainties inc for fixed j, and the other from
uncertainties inj. The contribution from the first term is
based on the analytic expression for the HessianHc , which
can be evaluated for anyj. The rest of the calculation in
volves randomly drawing samples fromp(jud) using the
Markov Chain Monte Carlo~MCMC! technique described
above. For eachj drawn, the optimumĉ has to be found
using the minimization procedure described above. Then,
spline values at the data points are obtained:b̂5Fĉ. The
integration in Eq.~16! is accomplished by averaging th
quantity within the square brackets in the integrand over
j samples.

IV. RESULTS

We now describe the results of applying the analysis o
lined in the preceding section to the PIXE data shown in F
1. For this analysis the underlying auxiliary parameters,
scribed in Sec. II C, are the same as used in the prev
analysis shown in Fig. 1. The minimum distance betwe
knots isDx 5 0.015, the approximate width of the conspic
ous signal peaks at their base. Because we know that
signal peaks in the PIXE spectrum must be positive, we
clude the contribution of negative signals to the likelihoo
in effect settingl250. The scalel1 should be derived
from the signal@1#. As the signal is much larger than th
background, we setl1 equal to the average value of the da
set, about 270 in this case. Figure 3 shows the probab
distribution forE given in Eq.~19!. Note the extremely large

FIG. 3. The probability for the parameterE ~the number of
spline knots! given by Eq.~15!, shown as the solid curve, with it
various contributions. The maximum probability occurs atE514
knots.
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dynamic range of this plot. The likelihood,p(duĉ,ĵ,E,I) in-
creases monotonically withE since the fit to the data alway
improves with more knots. The Ockham factor forĉ,
p( ĉuj,E,I)(2p)E/2det(Hc)

21/2 @Eq. ~5!# decreases graduall
over the range ofE shown. The corresponding factor forj,
p( ĵuE,I)(2p)(E22)/2det(Hj)

21/2 decreases substantially
The net result is a strong peak in the probability atE514,
which contains a probability of 80%. Since most of the pro
ability falls into the singleE514 bin, we may legitimately
fix E at 14, instead of marginalizing overE, to obtain the
final background estimates.

The background estimate with the highest posterior pr
ability obtained in the simulated annealing search for
most probable knot position is shown in Fig 4. The hig
energy portion of the spectrum is now fit with a smoo
background, consistent with a physicist’s expectation. It
remarkable that our model requires only one additio
spline knot to fit the energy region above 0.25. It is a
interesting to note that the background under the first sign
cant peak at an energy of approximately 0.06 is smoot
and more plausible than for the previous analysis. The pla
ment of the knots is of interest. The highest knot dens
occurs in the vicinities of the three major peaks in the ba
ground. While these seem like fairly smooth sections of
background on this semilog plot, the curve varies somew
more rapidly in the linear space in which it is modele
These adaptive background estimates are very plausible

The rms uncertainties in the estimated background cu
are summarized in Fig. 5 as uncertainty bounds. These
derived from Eq.~16! by combining the variances from un
certainties inc using the analytic part for fixed knots plu
uncertainties arising from the knot positionsj, obtained by
numerical integration over the possible knot positions. F
of all, we see that the uncertainties are quite small compa
with the background itself, on the order of a few percent
the peak regions and about an order of magnitude smalle

FIG. 4. The same PIXE spectrum as in Fig. 1, showing the m
probable background estimate obtained using adaptive spline
which the optimal number of knots is found to be 14. In the ene
region above 0.25, the estimated background is now smooth, i
cating a lack of evidence in the data for the oscillations visible
Fig. 1.
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the high-energy end of the spectrum. The uncertainties
to those inc dominate at the first significant peak and in t
high-energy tail. However, the uncertainties arising fro
knot placement are most important around the two sig
peaks in the spectrum around an energy of 0.2. Clearly
simple formula based on a single contribution to the to
uncertainty applies.

The uncertainty bands shown in Fig. 5 actually cor
spond to the square root of the diagonal terms of the cov
ance ofb given in Eq.~16!. These are useful for showing th
limits of uncertainty of the curve, but are not applicable f
estimating the consequences of these uncertainties in
background on further computation, e.g., on the areas u
a signal peak. For that, the full covariance matrix is requi
because one expects a significant degree of correlation in
uncertainties from one position to another. For examp
when two points lie near each other in the same spline in
val, there is a strong positive correlation in their uncertaint
because their estimates both rely on the same cubic sp
curve. It is feasible to calculate the full covariance mat
using Eq.~16!, but not so easy to display it.

To demonstrate how well our background method wo
for signals with both positive and negative contributions,
turn to the Auger spectrum shown in Fig. 6~a!. This spectrum
was obtained for an iron sample using a four-grid low-ene
electron diffraction~LEED! optics, operated in the retarding
field mode. Harmonic modulation of the retarding potent
and lock-in detection of the transmitted current on the sec
harmonic of the modulation frequency results in spectra
shown in Fig. 6~a!. Such spectra constitute the energy deriv
tive of the sum of the Auger electron energy distribution, t
signal, and the slowly varying, much larger secondary e
tron energy distribution, the background. The signal conta
both positive and negative components. For quantitative
ger analysis it is mandatory to separate the two contributi
to the total signal@21,22#. The principal signal seen at 47 e
comes from anM2,3VV Auger transition.

It is evident from Fig. 6 that, while the background m

FIG. 5. The uncertainties in the background function display
in Fig. 4. The separate contributions to the rms deviation of
background values are shown; from the uncertainties in thec and
the variance arising from the knot positionsj.
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be smooth, it varies quite rapidly at low energies. This b
havior is inconsistent with our general background mod
whose prior is based on the second derivative of the ba
ground. However, a simple transformation of the measu
spectrum brings the background into conformance with
background model and does not dilute the signal charac
istics unduly. By taking the logarithm of the measured sp
trum, the nearly exponential rise of the spectrum is tra
formed into an approximately linear dependence that is m
easily accommodated by the background model. Furth
more, such a transformation of the ordinate does not cha
the width of the signal structure, leaving unchanged
minimum knot separation criterion. As a general princip
for applying our model to a specific spectrum, it may
transformed to bring the background into conformance w
the background model, provided the signal contributions
not lose their assumed rapid and localized characteris
For example, we find that taking the square root of the ho
zontal scale, after a suitable offset, yields a data record
also provided reasonable estimates of the background.

Figure 6~b! shows the Auger spectrum after the transfo
mationz(k)5 log@a2y(k)#, wherey(k) is the original spec-
tral amplitude anda is a constant~5340 in this case!. The
uncertainties in the transformed spectrum are obtained
dividing the uncertainties in the original spectrums i by a
2y(k). s i is estimated to be approximately 35 over the e
tire spectrum. The transformed spectrum is analyzed us
the background models described earlier. The minimum k
separation is set atDx 5 15 eV. In this analysis,l1 andl2

are assumed to be equal because the positive and neg
signals are expected to have approximately the same am

d
e FIG. 6. ~a! An MVV Auger spectrum for iron. The estimate
background shown is that obtained for the transformed spect
shown in~b!. ~b! A logarithmic transformation of the Auger spec
trum shown in~a! reduces the curvature of the background, rend
ing it suitable for the general approach presented here. The
mated background is shown.~c! The signal determined by
subtracting the estimated background from the original spectr
The inset in~c! shows the autocorrelation of the signal vs ener
difference. A significant secondary peak is seen at an energy o
of 39 eV.
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tudes. They are set to a typical value of about 0.1. The
dence evaluation of Eq.~19! shows thatp(Eud,I) is rather
flat for the number of nodes betweenE58 and E5Emax

512. The lack of a strong peak in the evidence, as see
the earlier PIXE analysis, may be explained as follows. T
prior on j, given in Eq. ~7!, increases considerably asE
approachesEmax because of the decreasing available volu
for knots. This effect is partly counteracted by the decreas
volume given byHj , but not completely. Thus, the Ockha
factor pertaining toj may effectively increase with increas
ing E, a behavior that is unexpected, but plausible. It is
the number of parameters that define the penalizing Ock
factor but the phase space of the prior covered by the h
likelihood region, which may increase when the parame
are highly correlated. As the likelihood probability increas
insignificantly forE>8, we show the background estimate
for E58. The results forE.8 lie within the line thickness
of the results forE58. Thus marginalization overE would
yield quite the same result. The estimated background
shown in Fig. 6~b!, and is transformed back into Fig. 6~a! for
comparison with the original spectrum.

After plotting the difference between the original spe
trum and its estimated background shown in Fig. 6~c!, a
possible secondary peak is observed. This small peak is d
onstrated in the autocorrelation of this background subtra
spectrum, shown as an inset in Fig. 6~c!. A secondary peak
with an amplitude of about 2% of the main peak is convin
ingly shown at an energy offset of 39 eV, which correspon
to anM1VV Auger transition for iron. In this case, a prop
sk
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background subtraction even helps one identify the prese
of less apparent signals in an Auger spectrum.

V. SUMMARY

We have developed a probabilistic model to separate
background from signals in spectra. The general assumpt
are that the background varies smoothly and that each
idly varying signal peak is confined to a well-defined inte
val. The background is represented by a cubic spline ba
In order to allow the smoothness of the background to
commodate the data, we have allowed the number of sp
knots and their position to vary. Our Bayesian approach p
vides a straightforward way to deal with this adaptivity b
marginalizing over the probability of the number of knot
The effect of Ockham’s factor is to produce a maximum
this probability. We have further extended the earlier wo
by incorporating signals with either positive or negati
components, or both. The uncertainties in the estima
background have also been shown.
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